All-Optical Reversible Manipulation of Exciton and Trion Emissions in Monolayer WS2
نویسندگان
چکیده
منابع مشابه
Exciton Binding Energy of Monolayer WS2
The optical properties of monolayer transition metal dichalcogenides (TMDC) feature prominent excitonic natures. Here we report an experimental approach to measuring the exciton binding energy of monolayer WS₂ with linear differential transmission spectroscopy and two-photon photoluminescence excitation spectroscopy (TP-PLE). TP-PLE measurements show the exciton binding energy of 0.71 ± 0.01 eV...
متن کاملNonlinear optical selection rule based on valley-exciton locking in monolayer ws2
Optical selection rules fundamentally determine the optical transitions between energy states in a variety of physical systems, from hydrogen atoms to bulk crystals such as gallium arsenide. These rules are important for optoelectronic applications such as lasers, energy-dispersive X-ray spectroscopy, and quantum computation. Recently, single-layer transition metal dichalcogenides have been fou...
متن کاملExciton and Trion Dynamics in Bilayer MoS
PL spectra from bilayer MoS 2 could not be tuned by electric fi eld at room temperature owing to its indirect band gap manner, [ 7 ] which makes the exciton and trion dynamics in bilayer MoS 2 still underexplored. In this paper, we demonstrate the valley control of exciton and trion dynamics in bilayer MoS 2 , via the comodulations by both temperature and electric fi eld. We found that as tempe...
متن کاملObservation of Intervalley Biexcitonic Optical Stark Effect in Monolayer WS2.
Coherent optical driving can effectively modify the properties of electronic valleys in transition metal dichalcogenides. Here, we observe a new type of optical Stark effect in monolayer WS2, one that is mediated by intervalley biexcitons under the blue-detuned driving with circularly polarized light. We find that such helical optical driving not only induces an exciton energy downshift at the ...
متن کاملValley-selective optical Stark effect in monolayer WS2.
Breaking space-time symmetries in two-dimensional crystals can markedly influence their macroscopic electronic properties. Monolayer transition metal dichalcogenides (TMDs) are prime examples where the intrinsically broken crystal inversion symmetry permits the generation of valley-selective electron populations, even though the two valleys are energetically degenerate, locked by time-reversal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanomaterials
سال: 2019
ISSN: 2079-4991
DOI: 10.3390/nano10010023